Isolating the spectral signature of H3O(+) in the smallest droplet of dissociated HCl acid.
نویسندگان
چکیده
The centrally important role of acids in aqueous chemistry has stimulated the search for the smallest droplet of hydrochloric acid. Based on several independent quantum calculations, this appears to be the HCl(H2O)4 cluster, which dissociates into the so-called solvent ion pair (SIP), H3O(+)(H2O)3Cl(-). Experimental verification of this prediction via infra-red spectroscopy is a major challenge and despite several recent reports of this SIP, there remains uncertainty about these observations. In this report, we present a calculation of the IR spectrum of the SIP in a fashion that isolates the contribution from the signature hydronium ion, H3O(+). The computed spectrum indicates that the vibrational states of H3O(+) are highly mixed, resulting in dispersed spectral features between 1300 and 3000 cm(-1), with the region between 2100 and 2900 cm(-1) being especially rich. These predictions point out the complexity of the SIP spectrum and offer guidelines for experiment. The energies of the HCl stretch fundamentals for three minima of the undissociated HCl(H2O)4 cluster are also reported.
منابع مشابه
Investigation of Behavior of Forced Degradation of Lidocaine HCl by NMR Spectroscopy and GC-FID Methods: Validation of GC-FID Method for Determination of Related Substance in Pharmaceutical Formulations
The forced degradation study of lidocaine HCl was carried out according to the ICH guideline Q1A (R2). The degradation conditions were assessed to be hydrolysis, oxidation, photolysis and dry heat during 24 h, 48 h and 72 h and then the samples were investigated by GC-FID method and nuclear magnetic resonance (NMR) spectroscopy. According to these results, the degradation products were not o...
متن کاملInvestigation of Behavior of Forced Degradation of Lidocaine HCl by NMR Spectroscopy and GC-FID Methods: Validation of GC-FID Method for Determination of Related Substance in Pharmaceutical Formulations
The forced degradation study of lidocaine HCl was carried out according to the ICH guideline Q1A (R2). The degradation conditions were assessed to be hydrolysis, oxidation, photolysis and dry heat during 24 h, 48 h and 72 h and then the samples were investigated by GC-FID method and nuclear magnetic resonance (NMR) spectroscopy. According to these results, the degradation products were not o...
متن کاملThe electronic structure of the hydrated proton: a comparative X-ray absorption study of aqueous HCl and NaCl solutions.
The oxygen K edge X-ray absorption spectra of aqueous HCl and NaCl solutions reveal distinct perturbations of the local water molecules by the respective solutes. While the addition of NaCl leads to large spectral changes, the effect of HCl on the observed X-ray absorption spectrum is surprisingly small. Density functional theory calculations suggest that this difference primarily reflects a st...
متن کاملThe Common Ion Effect
This is an acid-ionization problem, but differs from the simple ionization illustrated in previous examples. Here you have a starting concentration of H3O + (= 0.010 M) from the addition of a strong acid (HCl). This gives a different type of equation in Step 2, but you solve it in Step 3 by using a similar approximation method. You assume that x is small compared with starting concentrations of...
متن کاملThe effect of citric acid and citrate on protoplasmic droplet of bovine epididymal sperms
For evaluation of citric acid and citrate effects on bovine epididymal protoplasmic droplets, fifty bovine testes were collected in the October 2007 till June 2008 from Urmia slaughterhouse and transported to the laboratory in a cool container filled with 5 °C ice pack. Caudal epididymis was incised and sperm cells were put into Petri dishes containing hams f10 media with 10% fetal calf serum (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 9 شماره
صفحات -
تاریخ انتشار 2015